BOOM

Trending Searches

    SUPPORT
    BOOM

    Trending News

      • Fact Check 
        • Fast Check
        • Politics
        • Business
        • Entertainment
        • Social
        • Sports
        • World
      • Law
      • Explainers
      • News 
        • All News
      • Decode 
        • Impact
        • Scamcheck
        • Life
        • Voices
      • Media Buddhi 
        • Digital Buddhi
        • Senior Citizens
        • Videos
      • Web Stories
      • BOOM Research
      • BOOM Labs
      • Deepfake Tracker
      • Videos 
        • Facts Neeti
      • Home-icon
        Home
      • About Us-icon
        About Us
      • Authors-icon
        Authors
      • Team-icon
        Team
      • Careers-icon
        Careers
      • Internship-icon
        Internship
      • Contact Us-icon
        Contact Us
      • Methodology-icon
        Methodology
      • Correction Policy-icon
        Correction Policy
      • Non-Partnership Policy-icon
        Non-Partnership Policy
      • Cookie Policy-icon
        Cookie Policy
      • Grievance Redressal-icon
        Grievance Redressal
      • Republishing Guidelines-icon
        Republishing Guidelines
      • Fact Check-icon
        Fact Check
        Fast Check
        Politics
        Business
        Entertainment
        Social
        Sports
        World
      • Law-icon
        Law
      • Explainers-icon
        Explainers
      • News-icon
        News
        All News
      • Decode-icon
        Decode
        Impact
        Scamcheck
        Life
        Voices
      • Media Buddhi-icon
        Media Buddhi
        Digital Buddhi
        Senior Citizens
        Videos
      • Web Stories-icon
        Web Stories
      • BOOM Research-icon
        BOOM Research
      • BOOM Labs-icon
        BOOM Labs
      • Deepfake Tracker-icon
        Deepfake Tracker
      • Videos-icon
        Videos
        Facts Neeti
      Trending Tags
      TRENDING
      • #Operation Sindoor
      • #Pahalgam Terror Attack
      • #Narendra Modi
      • #Rahul Gandhi
      • #Waqf Amendment Bill
      • #Arvind Kejriwal
      • #Deepfake
      • #Artificial Intelligence
      • Home
      • Boom Picks
      • Folding Graphene Like Origami May...
      Boom Picks

      Folding Graphene Like Origami May Allow Us To Wear Sensors In Our Skin

      By - A Staff Writer |
      Published -  30 July 2015 1:46 PM IST
    • Boomlive

      Scientists have figured out how to make this…with graphene. McEuen Group, Cornell University

      Material scientists have found a way to apply the ancient art of kirigami– a way of building complex structures by cutting and folding paper – to the wonder material graphene.

      The experiment shows that ripples in a graphene sheet can increase the bending stiffness of the material significantly more than expected – a discovery that could lead to new types of sensors, stretchable electrodes or tools for use in nanoscale robotics.

      Graphene is a single layer of graphite, a naturally occurring mineral with a layered structure. The material, first produced in the lab in 2003, has impressive electrical, thermal and mechanical properties, which makes it potentially useful in applications ranging from new electronic devices to additives in paints and plastics.

      The promising material is made up of carbon atoms structured in a series of interconnecting hexagons, similar to chicken wire. It is made by pulling apart the layers in graphite in what scientists call a “top-down” approach (where we take something big and make it smaller). This can be done using adhesive tape; chemical reagents; or by sheer force such as those generated in a kitchen blender or mixer. Although this sounds quite simple it is not suitable for producing large sheets of graphene.

      To do this, a “bottom-up” approach is needed, where graphene is assembled by decomposing a carbon-containing molecule such as methane over a hot metal surface, typically copper. This is the technique the researchers in the new study used to produce a sheet of graphene that they then could manipulate using a version of kirigami.

      Paper and graphene versions of kirigami. Graphene image taken using a transmission white-light optical microscope.McEuen Group, Cornell University

      Art meets science

      Kirigami (“kiri” means cut and “gami” means paper) is a type of origami(“ori” means fold) which has been practised for centuries to produce beautifully complex shapes and patterns. Lots of us have probably tried our hand at these techniques as children, making snowflakes out of scrap paper.

      The researchers used gold pads as “handles” to crumple a graphene sheet like paper – in a process that is entirely reversible. Like paper, the graphene folds and crumples but does not noticeably stretch.

      [video type='youtube' id='utZ4SIrOHWo' height='350']

      A gold pad (the dark square which measures a few 10’s of microns) is being pushed by a micromanipulator and is attached to a graphene spring

      By using a sophisticated measuring technique, where an infrared laser is used to apply pressure to the gold pad on the graphene film, it is possible to measure the level of displacement of the graphene film. This displacement can then be used to workout the elastic properties of the graphene sheet. Wrinkling of the graphene sheet improves its mechanical properties, similar to how a crumpled sheet of paper is more rigid than a flat one.

      In fact it was such mechanical similarities that enabled the researchers to translate ideas directly from paper models to graphene devices. Using photolithography, a method of transferring geometric shapes on a mask to a surface, as the “cutting scissors”, the team showed that it is possible to create a series of springs, hinges and stretchable graphene transistors.

      Remotely-operated robotics?

      The research has opened the door to manipulating two-dimensional graphene sheets to create new material structures with movable parts. The possibility of stretchable transistors is extremely interesting as there is a growing demand to develop flexible and even wearable electronics.

      When stretching a material you would normally expect the electrical resistance to change. In the stretchable transistors developed in the new study, a graphene spring is sandwiched between a source and a drain electrode. When stretched to over twice its original size no noticeable change in electrical properties was detected. Repeated stretching and un-stretching also had little effect either.

      [video type='youtube' id='JJhGxED8NcU' height='350']

      Working in a water and soap solution, large sheets of graphene can dramatically crumpled like soft paper, and return to their original shape

      This ability to maintain graphene’s electrical properties is down to its lattice structure, which does not undergo much change during the stretching of the spring. It even proved possible to take the kirigami devices to the next level, moving or folding the graphene without using direct contact. For example, by replacing the gold pads with a ferromagnetic material, such as iron, the sheets could be manipulated in a magnetic field, creating complex motions such as twists. The technique could be used to create devices that respond to light, magnetic fields or temperature.

      The concept of manipulating two-dimensional materials to generate more complex structures on the macro-, micro- and nanoscale is genuinely exciting. Being able to create new metamaterials, engineered to have properties not usually found in natural materials, could open the door to many new types of tools. Possibilities include new sensors, stretchable electrodes that could be used in robotics or nanomanipulators, tiny machines that can move things around with nanometer precision.

      Stretchable electrodes would allow highly conformable or flexible electronics and sensors to be incorporated into synthetic skin or flesh, such as in robots or artificial limbs, while retaining full functionality. We could even visualise such flexible electrodes and sensors being used in wearable electronics incorporated into clothing for realtime personal health monitoring – the ultimate personal healthcare.

      This article has been republished from TheConversation.com.

      Tags

      GrapheneScienceSensorsSkintechnology
      Read Full Article
      Next Story
      Our website is made possible by displaying online advertisements to our visitors.
      Please consider supporting us by disabling your ad blocker. Please reload after ad blocker is disabled.
      X

      Subscribe to BOOM Newsletters

      👉 No spam, no paywall — but verified insights.

      Please enter a Email Address
      Subscribe for free!

      Stay Ahead of Misinformation!

      Please enter a Email Address
      Subscribe Now🛡️ 100% Privacy Protected | No Spam, Just Facts
      By subscribing, you agree with the Terms & conditions and Privacy Policy connected to the offer

      Thank you for subscribing!

      You’re now part of the BOOM community.

      Or, Subscribe to receive latest news via email
      Subscribed Successfully...
      Copy HTMLHTML is copied!
      There's no data to copy!